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LETTER TO THE EDITOR 
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Abstract. Feynman-Vernon theory is used to calculate the energy levels of a quantum 
harmonic oscillator interacting linearly with a heat bath. 

One of the long-standing problems in theoretical physics appears to be the quantisation 
of dissipative systems [1,2]. During the last few decades several approaches have 
been suggested. For example, Kanai [ 3 ]  has introduced explicitly time-dependent 
Hamiltonian, solutions of which, however, seem to violate the uncertainty principle 
(see, e.g., the critiques by Dekker [4] and Greenberger [ 5 ] ) .  

In the present letter we shall use the Feynman-Vemon theory [ 6 ]  to calculate the 
energy spectrum (for large n) for a quantum harmonic oscillator interacting linearly 
with the reservoir which is chosen as a system of N non-interacting harmonic oscillators. 
The Lagrangian in our problem is 

and 

N 

L B =  c ( $ m R f - $ m w f R : )  
i = l  

In the above formulae x is the coordinate under consideration, Ri is the coordinate 
of the ith particle of the bath which is coupled to the x and ci is the corresponding 
coupling constant. 

In order to evaluate the energy levels of our system we introduce the reduced 
Feynman propagator defined as [7] 

k ( x ,  p h ;  x', 0) = d R K ( x ,  R, p h ;  x ' ,  R',  O ) I R = R '  (2) I 
where 

x ( p h ) = x  R ( p h ) = R  
1 K ( x ,  R, p h ;  X I ,  R', 0 )  = Dx DR exp - S [  x, RI ( 3 )  I(,) = X I  I R ( o )  = R' h 

and SEX, RI = dt L( t )  which is the action of the total system. 
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The reduced propagator k ( x ,  p h ;  x’, 0) can be written as 

1 
k ( x ,  p h ;  x’,  0) = Dx F[x] exp -&[XI I h 

where the influence functional F[x] is by definition 

(4) 

( 5 )  

For Lagrangian ( 1 )  all the integrals appearing in F [ x ]  are Gaussian and can be easily 
calculated. The result is 

F [ ~ ] = F ~ ( p f i ) e x p 6 [ ~ ’ ~  d t  loB* dt’x(r)x( t ’ )a( t - t ’ )  ( 6 )  

and FO(ph)  = exp-ZkN,l ln(2i sintphw,). In the classical limit p h  + 0 ( p  = l /kBT) ,  
the kernel a( t - t’) is 

C 2 P 0 T  a ( t  - t’) = - S ‘ ( J t  -r’l) 
2m (7) 

where the constant po  characterises density of states of the reservoir. 

stationary point xc( t )  which is given by 
In order to calculate k ( x ,  p h ;  x’, 0), we first expand the action S[x] around the 

M X C ( t ) + M w 2 ~ , ( t ) = 2  dt’x,(t’)a(f-t’) (8) 

,tc( t )  + w2xc( t)  + yXc( t )  = 0 

IoBh 
along with the conditions xc(0) = x c ( p h )  = x. Using (7), equation (8) reduces to 

(9) 

with y = c2p07r/(2mM). Using the solution of (9) one finds 

cosh i y p h  
sin j ~ p h  

where A 2  = 4 w 2  - y 2  > 0. The reduced propagator can be calculated by using a method 
described by Coleman [8] with the result: 

where Do corresponds to a free particle, i.e. Do= - M  d2/dr2, and 

D( t - t’) 7,  (2 ’ )  dt’ = E,T, ( t )  

where 

D( t - t ’ )  = S( t - t ’ )  

Again, using (7) one can reduce (12) into the following equation: 
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and ~ ~ ( 0 )  = v n ( p h )  = 0. Using the solution of (14) one finds 

-- det Do J ( o p h ) ’ - ( i y p h ) ’  
det D sinJ(wpfi)2-(typ+i)2‘ 

- 

Combining ( lo) ,  ( 1 1 )  and ( 1 5 )  we can write the propagator as 

MA iMAx2 
(cos iAph -cosh i y p h ) )  (16) 

4 r i h  sin ; A ~ R  2h  sin 4Aph 
B(x, p h ;  x, 0) = 

which is reduced to the Feynman and Hibbs result [9] for y = 0 (free particle case). 
The energy levels of the oscillator can be calculated by the Feynman method [9]. 

For large n, when can be neglected with respect to n, one finds easily 

where in the last step we have used the fact that y is small. Equation (17) tells us that 
for small linear coupling to the reservoir, the energy levels of the harmonic oscillator, 
for large n, are reduced by a factor of 4 ( y / 2 ~ ) ~ .  

Let us compare our result with others. In the canonical approach used by Tartaglia 
[lo], the expectation value of the Hamiltonian, for the damped quantum oscillator, is 

which is time independent, but the expectation value of the energy ( E ) ,  = 
( H ) ,  exp(-yt) is not. Similar modification was found by Hasse [ l l ] .  His expectation 
value of the Hamiltonian is 

h W 2  
( H ) , = ( n + f ) -  n 

where 0 = (02 - a  y 2 ) ’ / 2  is the frequency reduced by damping. It stays constant in time 
but the expectation value of energy ( E ) ,  = ( H ) ,  exp(-yt) does not. 

The author would like to thank the referee for useful remarks. 
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